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THE LIFT GENERATED BY VIBRATIONAL MOTIONS
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By applying the reacted pressure on the &&deformed'' surface, we have calculated
theoretically the time-averaged lift forces exerted on a vibrating body in the #uid medium
with the non-viscosity and small disturbance assumptions. The lift turns out to be
proportional to the product of the amplitudes of translating and deforming vibrations. We
could thus deduce the scaling law applicable for the forces generated by the vibrational
motions in the #uid medium.
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1. INTRODUCTION

In #uid mechanics, the lift force exerted upon an obstacle surrounded by the incoming #uid
#ow is always linearly related to how much circulation is generated by this inserted
obstacle. This relation is known as Kutta}Joukowski law [1], which states that the lift force
equals the product of #uid mass density, incoming #ow velocity, and the circulation
generated. One of the basic assumptions of the Kutta}Joukowski law is that the velocity
"eld must be stationary, i.e., the #uid #ow is steady. Unfortunately, there exists no such
simple relation or theory for the unsteady #ows. In general, unsteady #uid dynamic
problems are highly non-linear, and computational #uid dynamics (CFD) is required for
practical applications [2]. In spite of theoretical di$culties, however, #uid dynamics
theorists have tried to apply the concepts of steady #ows to explain the unsteady #ow
phenomena [3, 4]. Here, we try to derive some theoretical results rather than the numerical
computations for simple examples of unsteady #ows induced by some vibrating bodies,
which will turn out to have useful physical meanings about the lift forces generated by the
motions of deformable bodies in the #uid.

2. THE VIBRATIONAL SPHERE

As a sample problem, we consider a sphere of radius a immersed in the exterior in"nite
#uid medium, as shown in Figure 1. The undisturbed mass density of the #uid is denoted by
o. The center of the sphere is assumed to oscillate vertically (in Z direction) about the origin
with a circular frequency u and an amplitude d (t). Additional to this vertical oscillation, the
radius of this sphere is also varied harmonically at the same frequency and expressed as
a(t)"a

0
#d cos(ut#b), where a

0
is the averaged or undeformed radius, b is the phase

angle between the vertical and dilatational oscillations, d is the amplitude of radius or
dilatational oscillation. The question is: what are the pressure distribution and net force
exerted on the sphere at various frequencies and phase angles, when the time-averaged net
force exerted on the sphere is especially considered.
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Figure 1. Geometrical description for the sphere problem.

348 D.-C. LIU
The question stated above is a typical problem of classical #uid mechanics. The most
general formalism of #uid dynamics will lead to the Navier}Stokes equations, which is too
di$cult to be solved exactly even for simple problems. Thus, some assumptions and
simpli"cations are necessary. As in most situations in aerodynamics and hydrodynamics,
we will "rst neglect the viscous e!ect. This means that we will consider the high Reynolds
number #ows. Secondly, we will neglect the non-linear convective terms in the
Navier}Stokes equations, this can be done by assuming that there is no incoming #ow in
the far "eld and there exist the following small disturbance conditions:

Dd/a
0
D@1, Dd/a

0
D@1.

It turns out that, under the above assumptions, the Navier}Stokes equations can be
reduced to ordinary linear acoustic equations [5]. That is, the problem under consideration
will be solved if we can determine the velocity potential u everywhere in the #uid, which
must satisfy the wave equation c2+u"L2u/Lt2 if we denote c as sound speed in the #uid.
The velocity "eld v equals !+u by de"nition, and u relates to the pressure disturbance as
p"o Lu/Lt. Furthermore, we will specify the boundary conditions compatible with the
vibrational motions of the sphere, and the radiation conditions at in"nity.

All the considerations mentioned above lead to the standard boundary value problem
(BVP) formulation for the acoustic "eld, and the solution procedures are nothing more than
the method of separation of variables for the wave equation. The solution, or the pressure
distribution, is just the linear combination of two parts: the sound "eld generated by the
vertically translating motion, plus that generated by the pulsating motion of the sphere
[5, 6]. We could calculate the instantaneous physical quantities, such as pressure or velocity
"elds, everywhere in space and time. But, if we want to calculate the time-averaged force
exerted on the deformable sphere, we obtain only zero force, which might violate our
physical intuitions.

This zero force contradiction arises from the fact that in an ordinary boundary value
formulation of the acoustic or vibrational problems, we usually put the boundary
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conditions on the &&undeformed'' boundary. This simpli"cation, of course, is suitable for our
small disturbance assumptions, but it can merely lead to compatible results as if the bodies
are nearly undeformed. On the other hand, if we want to trace the #uid particle exactly as
the #uid deforms, we will get the Lagrangian descriptions [7] for the #uid motion, in which
the #uid dynamic equations are much more inconvenient to be solved.

3. LIFT FORCE CALCULATIONS

Our method to overcome the zero force contradiction is quite straightforward: we just
apply the pressure calculated by the linear theory to the corresponding instantaneous
deformed boundary. For simple body shapes [8], the results are quite simple if we neglect
higher order terms, and may be generally expressed as

¸"1
2
ov

t
v
d
AC(m, b), (1)

where v
t
"ud is the velocity amplitude of the translating motion, v

d
"ud is the velocity

amplitude of the deforming motion, A is the averaged apparent area viewed from the
direction of translational motion, C is the dimensionless lift coe$cient which depends on
the reduced frequency m"ua

0
/c and the phase angle b de"ned above. For the present

problem, the lift coe$cient can be expressed explicitly as

C(m, b)"
8

3

(m2#2) cosb!m3 sinb
m4#4

. (2)

For every "xed frequency, we can choose the value of b such that the lift coe$cient reaches
its maximum. This value of b will be b"b

m
,!tan~1(m3/(m2#2)), and the lift coe$cient

with b"b
m

will be

C(m, b
m
)"C

m
(m),

8

3

[(m2#2)2#m6]1@2

m4#4
. (3)

The lift coe$cient C
m
(m) can further be maximized to its maximum value (about 1)696) if

m"(J5!1)1@2O1)112. The meaning of C
m
(m) is the maximum lift coe$cient as the phase

angle b is optimally chosen at a given frequency, the corresponding lift is then maximized as

¸
m
"1

2
ov

t
v
d
AC

m
(m). (4)

4. PHYSICAL INTERPRETATIONS

The phase angle b
m

and lift coe$cient C
m

as de"ned above are the functions of the
reduced frequency m, and are plotted in Figure 2. In the low frequency range m@1, the lift at
the given frequency reaches its maximum when the phase angle approximately equals to
zero. That is, in order to get the maximum lift force, the sphere should dilate to its maximum
size when its center reaches the highest vertical position, and it should contract to its
minimum size when its center reaches the lowest vertical position. This is due to the fact
that, in the low frequency range the e!ect of compressibility of the #uid is less important, the
reaction of the #uid results from the induced inertia of added mass when the sphere moves
in the #uid [7]. At zero frequency, the lift coe$cient C

m
equals to 4/3. By the present

unsteady formulation, it can be shown that, as the frequency approaches zero, the added



Figure 2. Phase angle b
m

and lift coe$cient C
m

for the sphere problem.
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mass of the sphere will be equal to the product of the half of its volume and the density of the
#uid, which is compatible with the result of elementary #uid mechanics [1].

On the other hand, for higher frequency such that mA1, the lift at a given frequency
reaches its maximum when the phase angle equals to !n/2. That is, in order to acquire the
maximum lift, the sphere should dilate to its maximum size when its center passes the origin
in the downward direction, and it should contract to its minimum size when the center
passes the origin in the upward direction. This is due to the fact that, in the high frequency
range the e!ect of compressibility of the #uid is of importance, and the reacted pressure on
the surface of the #uid results from the so-called piston e!ect or reaction localization [6],
which states that, in the high frequency limit, the surface pressure depends only on the
instantaneous velocity normal to the boundary surface relative to the #uid. The asymptotic
behavior of the lift coe$cient in a high frequency range is C

m
(m)O8/3m.

The physical meaning of equations (1) and (4) are quite clear. To obtain the lift force from
vibrational motions, we need not only the simple beating motion, but more importantly the
deforming motion. If the body only translates harmonically but does not deform, then the
total force exerted on the body will also vary harmonically in time, which will result in no
time-averaged lift forces. On the other hand, if the body only deforms harmonically but its
center does not translate, then the pressure exerted on the di!erent parts of the body will
cancel each other, and we still get no resultant forces. These conclusions will also be true
even if we consider the most general cases in which the #ow separation, non-linearity and
viscous e!ects are included.

Moreover, we should apply the pressure on the deformed boundary in the theoretical
calculations, otherwise we will improperly have the results of no time-averaged lift forces.
As shown in the present and following cases, the lift coe$cient in the low and medium
frequency ranges, turns out to be in the order of unity. The lift coe$cient, of course, depends
on the geometric con"gurations (i.e., the shapes of the body, modes of the vibration, etc.) of
the problem.

5. VIBRATIONAL CYLINDERS

In order to get a better idea about the characteristics of the lift generated by the
vibrational motions, we study the corresponding cylindrical problem [8], i.e., we consider
a cylinder of in"nite length, which translates laterally in the vertical direction with its radius
varied harmonically. Following the same procedures as when we treated the spherical
problem, we obtain the phase angle b

m
and lift coe$cient C

m
(which are de"ned the same
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way as the spherical problem) as

b
m
"!tan~1A

ImQ(m)

ReQ(m)B , C
m
"

n
2

1

m
DQ(m) D , (5)

where the function Q(m) is de"ned as Q(m)"H
1
(m)/H@

1
(m) and H

1
(m) is the "rst kind Hankel

function of order one, m"ua
0
/c and now a

0
is the radius of the cylinder. The phase angle

b
m

and lift coe$cient C
m

for this cylinder problem are plotted in Figure 3. At zero
frequency, the lift coe$cient C

m
equals to n/2. In the high frequency range, the asymptotic

behavior of the lift coe$cient is C
m
(m)On/2m. Except for some details, the general trends are

similar to the sphere problem, thus we have just the same physical interpretations for the
cylinder problem as those given for the sphere problem.

It may be possible to give here more examples or carry out more details and/or
modi"cations, but the general trends are clear: in the low frequency range, the inertial e!ect
of the #uid is the dominant factor; while in the high frequency range, the local compressible
e!ect of the #uid is dominant. Furthermore, for regular bodies with moderate deformations,
the lift coe$cient may be in the order of unity in the low and medium frequency ranges.

6. LIFT FORCE IN DIMENSIONLESS FORM

As we are considering the time-averaged lift forces for the constant amplitude of
vibrations, we could rewrite equation (4) here as

¸
m
"

1

2
oc2AA

dd
a2
0
Bm2C

m
(m). (6)

We could de"ne the dimensionless lift as M̧
m
"m2C

m
(m), which is independent of the

amplitudes of vibrations. The dimensionless lifts for both the above-mentioned sphere and
cylinder problems are plotted in Figure 4. In both cases, there are no lifts at zero frequency,
and the lifts increase monotonically as the frequency is increased. The high frequency
asymptotic expressions for dimensionless lifts for both the sphere and cylinder cases are
8m/3 and nm/2 respectively. That is, as we beat (with deformation) more quickly, the lifts will
be increased without limit. It is obvious that the power consumption increases in any case if
we beat more quickly, this will "nally limit the beating frequency with limited available
energies.
Figure 3. Phase angle b
m

and lift coe$cient C
m

for the cylinder problem.



Figure 4. The dimensionless lift for both the sphere and cylinder problems (1 for sphere; 2 for cylinder).
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7. DISCUSSION AND CONCLUSIONS

Although we do not consider the e!ects of #ow separation, non-linearity and viscosity,
the lift coe$cients for simple geometries can be calculated theoretically as shown above,
while the results obtained are reasonable even under the present simpli"cations. In practical
instances [2}4], where the lifts generated by vibrational motions are to be evaluated, the
situations of the #uid #ow may be more complex. In the author's opinion, we can apply
equation (1) for cases when the e!ects of #ow separation, non-linearity, viscosity and others
should be taken into account, and we need only modify the lift coe$cient de"ned by
equation (1) for various situations, in which the coe$cient C(m, b) may be determined
numerically or experimentally. The key point is, we can regard equation (1) as the scaling
law for various vibrational-lift-generating processes, and we will include all the factors not
considered here by numerical or experimental methods.

In conclusion, in order to understand the characteristics of the lift forces generated by the
vibrational motions, we have, by applying the reacted pressure on the &&deformed'' surface,
deduced some results about the vibration-generated lift forces in the #uid medium under the
non-viscosity and small disturbance assumptions. The present calculations show that the
lift is proportional to the product of the amplitudes of translating and deforming vibrations.
We could thus de"ne the lift coe$cients for the cases in which the deforming motions of the
boundary surface are involved. The physical interpretations for these results are reasonable
and compatible with the concepts in the elementary #uid dynamics and acoustics. Further
applications or extensions of the present theory may be possible in the near future.
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